

Outline

- Overview of Autonomous Science on EO-1
 - Rationale
 - EO-1 Mission
 - Software Technologies
 - Science
- Future Applications of Autonomous Science
- Extension to Sensorweb Experiments
- Summary/Conclusions

ASE Autonomy Software

Autonomous Science

- Volcanic activity detection via spectral analysis (lava detection)
- Atmospheric feature (cloud) detection used for onboard data editing
- Feature detection via spectral analysis (land-ice-water-snow)

Autonomous Planning (CASPER)

- CASPER enables onboard development of new plans in response to science events
- CASPER generated plans respect EO1 resource and flight constraints

Autonomous Execution Software (Spacecraft Command Language)

- SCL expands CASPER plans into spacecraft commands
- SCL enables robust plans to deal with run-time uncertainties

ASE Scenario

Why fly autonomy software onboard?

- To utilize limited downlink resource
- To capture dynamic science

Old Way:

- Take 200 Images
- Downlink 200 images

New Way:

- Take 2000 Images
- Downlink best 200 images
 - Only most scientifically interesting portions
 - Could be cloud free images

Technology Carrier: EO1 Mission

ASE is a technology experiment

- Part of New Millennium ST6 Project
- Subsystem demonstration
- Funded to flight demonstrate autonomy software technology for future mission adoption
- Uses Hyperion instrument (hyper-spectral, 220 bands, 30 m resolution)

CDS: Two Mongoose V CPU's

- Mongoose V @ 8 MIPS and 256 MB RAM
- Flight control software on CDH CPU
- Autonomy software on instrument CPU

ASE on EO1 Mission Scenario

Autonomous Science

- Utilize onboard science analysis to summarize, retarget, or rapidly respond to science events to increase science return
- Onboard Science Components
 - Cloud detection
 - Thermal anomaly detection
 - Land, Ice, Water, Snow, Vegetation Recognition
 - Change detection
 - Feature recognition software (looking for specific patterns)
- Algorithms are valid for multiple features and processes: we are not limited to specific types of science targets
- The science analysis algorithms can be used for several imaging datasets (visible, IR, UV, radar, etc.) although we are taking advantage of the multi-spectral capabilities of Hyperion
- Onboard ASE Science Classifiers utilize up to 12 bands of L0.5
 Hyperion data (including 6 used by cloud detection algorithm)
 ESTC June 2004

Cloud Detection & Thermal Anomaly Detection

Cloud detection

- Developed by MIT/Lincoln Labs
- Uses intensities at six different spectra and thresholds to identify likely clouds in scenes
- Leverages key spectra for high accuracy with simple approach
- Discard scenes that are mostly clouds
- Cloud detection algorithm good analogue for Space Science mission atmospheric feature applications (such as Mars dust storm detection)

Visual Spectra

Infra-red Spectra

ava

Thermal anomaly detection

- Uses infrared spectra characteristics to detect lava flows & other volcanic activity
- Has been tested successfully on ground and in flight
- Good analogue for Space Science mission thermal anomaly detectors (such as Mars Odyssey & Io missions)

Active Volcanism Detection

Erta'Ale, Ethiopia 14 May 2001

Main lava lake

Possible artifact: may be second vent

VIS data

Land-Ice-Water Classification

- Land-Ice-Water-Snow Detection
 - Developed at JPL
 - Uses multiple spectra to identify areas of image with land, ice, water, and snow
 - Observation process:
 - Classify pixels, count pixels of water-icesnow-land
 - Compare with previous observation for new water or ice
 - If change is detected, trigger re-observation to monitor the rate of ice formation or break-up
 - Downlink entire new dataset

Location: Larsen Ice Shelf,

Antarctica

Process: Break-up of ice shelf

Trigger: Change Detection

Classifier Output:

Water is blue, Ice is White

7 km

4/13/2002

Flood Detection

Flood Detection

- To monitor regions that seasonally flood, demonstrating ASE change detection.
- Observation process:
 - As with ice: classify observation and count water pixels as basis for comparison
 - If sufficient number of changed pixels (a large enough area of change detected), then download data and retask spacecraft to obtain more data

Classifier Output: Water is blue, Land is Green

ASE Targets: 2003-2004

- = volcanoes
- = dunes
- ✓ = aeolian

- * = ice formation/breakup
- = flooding

Autonomous Planning

- CASPER is the Continuous Activity Scheduling Planning Execution & Replanning software
- CASPER use a model of spacecraft activities to construct a mission plan to achieve mission goals while respecting spacecraft operations constraints
 - Example goals: science requests, downlink requests, maneuver requests
 - Example constraints: memory, power, propellant, etc.
- CASPER uses continuous planning techniques to achieve a quick response time
- Replanning
 - CASPER is used onboard to replan newly derived science goals

CASPER uses continuous planning techniques to achieve a quick response time

Other CASPER Deployments

- Also being applied to
 - Autonomous rover control (Rocky7, Rocky8)
 - Ground communications station control (CLEaR)
- Also being used as single agent in Teamwork/Coordination (rover & spacecraft)
- Three Corner Sat Mission
 - Launch Fall 2004

Autonomous Execution

- Uses Spacecraft Command Language (SCL) developed by Interface and Control Systems
- SCL integrates procedural programming with a forward-chaining, rule-based system for event-driven real-time processing
- In the ASE concept, SCL scripts are planned and scheduled by the CASPER onboard planner
- SCL to also be used in ground control of EO1
- SCL is a mature software product used on many mission including several flights: Clementine I, ROMPS, DATA-CHASER, ICM for ISS, FUSE,...

Possible Future Applications: Mars

(Proposed Mars Odyssey Mission Scenario)

The Mars Odyssey THEMIS imager used about 5% of the time for mapping mission due to limited downlink. ASE science analysis could run during part or all of other 95%.

Feature Detected: save image for possible downlink

Ground is notified via engineering telemetry that an image is available, location, and type of detection.

Mars Technology Infusion

- We are developing and testing general science algorithms for Mars missions using Mars Odyssey mission data
- Our goal is infusion on Mars Odyssey extended mission and a roadmap for Mars missions
- Dark slope streaks

- Impact craters; faults/ fractures; depressions (e.g., pit crater chains)
- Lava flows; ice-enriched flows (e.g., rock/ice glaciers)

Feature-based Change Detection

Dark Slope Streaks

After cataloging the number of dark slope streaks in an area of interest, a new image of the same area could be used to determine if new dark slope streaks have occurred. If so, the software could:

- Save image for downlink
- Save portions around selected features
- Output summary of features detected in engineering telemetry (count, location & size, etc.)

MGS MOC Release No. MOC2-284, 24 May 2001 courtesy of Malin Space Science Systems STC June 2004

Possible Future Applications: lo

Feature identification: Volcanic plume detection

Change detection: Emplacement of pyroclastics and lava flows at lo (Galileo data)

Pele and Pillan Patera, 1997-1999

JPL's proposed **JIMO** mission: **J**upiter **I**cy **M**oons **O**rbiter

High spectral, spatial and temporal monitoring of Jupiter and the Galilean satellites will be possible with JIMO

ASE Status

- Demonstrated complete loop: generate plan, collect data, analyze data, trigger new request, re-generate plan
- Achieved 100% of full success criteria:
 - 5 triggered data collects
 - 5 triggered data edits (actually commanded noop)
- Completed more than 20 data collects under ASE control
- Modeled most of the EO-1 spacecraft commands, constraints, etc.
 - Can schedule a typical week of operations (testing this soon)
 - Not scheduling infrequent tasks (some instrument calibrations and maintenance activities)... yet
- Unintentionally demonstrated anomaly recovery:
 - An activity failure triggered both a short-term SCL response and long-term CASPER re-planning

ASE Example

Mt. Erebus 13:46 UTC May 14, 2004

Response re-imaging was on the next overflight (6 _ hours later)!

Related Work: Sensor Webs

Definition:

- A networked set of instruments
- Information is shared between sensors
- Sensors automatically modify their behavior on the basis of the collected data

Goal:

 To monitor remote environments, hazards and disasters, and natural resources using new data acquisition strategies and systems for integrated Earth sensing

Sensor Web Benefits

Benefits:

- Increased science understanding and quicker disaster response as a result of automatically reallocating sensor assets during dynamic events such as flooding, volcanoes, earthquakes, fires, etc.
- Allows scientists to specify multiple spatial resolutions by triggering additional sensors
- Allows a continuous presence without operations staffing
- Allows capture of non-periodic events

Timely Satellite Data

- Recent advances have made large amounts of timely satellite data readily available (see table)
- Unfortunately, for some applications higher resolution data or alternative instrumentation is needed to study science phenomena
- Ideally high resolution data would be continuously available
- Unfortunately, typically high resolution assets must be pointed at specific targets, or have infrequent over-flights (e.g., Landsat-7)

Satellite	Instrument	Frequency of Overflight	Timeliness
Terra, Aqua	MODIS	12 hours daylight, 12 hours night	several hours from acquisition (DAAC); regional near real-time (DB)
QuikSCAT	Scatterometer radar	~12 hours	daily
NOAA-POES	AVHRR	Variable, frequent	< 1 hour
GOES	Infra-Red, visible	Continuous	~25 minutes

EO-1 Sensorweb Experiments

- In our application we use low resolution, high coverage sensors (Terra/Aqua, GOES) to trigger observations by high resolution instruments (EO-1)
- We have conducted preliminary experiments in demonstrating the Sensor Web concept to track
 - Wildfires,
 - Volcanos, and
 - Floods

Sensor Web Concept

Re-tasking

Asset 2

Resolution **Data** (250m-1km resolution)

Obtain High Uplink New Resolution Request **Data of Event** (10m resolution)

Future Work: Sensor Webs

- The New Millennium Program has recently agreed to fund a sensor web observation campaign to study the worlds 250 most active volcanoes over the next several months
 - The campaign will utilize EO-1, Terra, Aqua, GOES, AVHRR, TOMS, and several ground assets
- This demonstration will provide important volcano science benefits:
 - More eruptions observed
 - Increased temporal resolution (especially soon after onset)
 - Multiple instruments tasked to observe events

- Using on-board autonomy software for planning, science data analysis, and execution will increase mission value and reduce mission cost by:
 - Returning only the most important science data
 - Allowing quick response to opportunistic and dynamic science events
- Using sensor web technology allows better use of observation assets for integrated global Earth science data collection

Acknowledgements

- Web Site: http://ase.jpl.nasa.gov
- ASE Team:

JPL:	ICS:	GSFC:
Rebecca Castano	Dan Arpin	Stuart Frye (Mitretek)
Steve Chien	Darrell Boyer	Dan Mandl
Ben Cichy	Jim VanGassbeck	Lawrence Ong
Ashley Davies		Seth Shulman
Russell Knight	Univ. of Arizona:	Stephen Ungar
Gregg Rabideau	Vic Baker	
Joe Roden	James Dohm	
Steve Schaffer Rob Sherwood Nghia Tang Danny Tran	Arizona State Univ. Ron Greeley Thomas Doggett Trinity Univ. Rachel Lee	Microtel: Jerry Hengemihle Nick Hengemihle Bruce Trout Scott Walling Hammers Eng.:
	Honeywell:	Jeff D'Agostino
	Glenn Bock	
	Robert Bote	
	Joe Howard	

